Researchers Grow Nanocircuitry with Semiconducting Graphene Nanoribbons

The method was discovered by UW scientists and confirmed in tests at Argonne

Written byArgonne National Laboratory
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

In a development that could revolutionize electronic circuitry, a research team from the University of Wisconsin at Madison (UW) and the U.S. Department of Energy's Argonne National Laboratory has confirmed a new way to control the growth paths of graphene nanoribbons on the surface of a germainum crystal.

Germanium is a semiconductor, and this method provides a straightforward way to make semiconducting nanoscale circuits from graphene, a form of carbon only one atom thick.

The method was discovered by UW scientists and confirmed in tests at Argonne.

"Some researchers have wanted to make transistors out of carbon nanotubes, but the problem is that they grow in all sorts of directions," said Brian Kiraly of Argonne. "The innovation here is that you can grow these along circuit paths that works for your tech."

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image