Researchers Tune in to Protein Pairs

Rice University team quantifies how mutations affect cell signaling in bacteria.

Written byMike Williams-Rice University News Office
| 5 min read
Register for free to listen to this article
Listen with Speechify
0:00
5:00

HOUSTON – (Jan. 27, 2014) –Rice University scientists have created a way to interpret interactions among pairs of task-oriented proteins that relay signals. The goal is to learn how the proteins avoid crosstalk and whether they can be tuned for better performance.

Each cell contains thousands of these two-component signaling proteins, which often act as sensors and trigger the cell to act.

The new research has significance for bioengineers who try to understand and modify signaling pathways to treat disease or carry out tasks. A paper on the research done at the Center for Theoretical Biological Physics (CTBP) at Rice’s BioScience Research Collaborative appears online this month in the Proceedings of the National Academy of Sciences.

The research team led by Rice physicist José Onuchic and bioengineer Herbert Levine used the predictive power of their pioneering direct coupling analysis statistical method to compare the genomic roots of thousands of protein pairs collected from many different bacterial organisms. Their product is a new metric to judge how mutations affect the way the pairs work.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image