Lab Manager | Run Your Lab Like a Business

Researchers Turn One Form of Adult Mouse Cell Directly Into Another

In a feat of biological prestidigitation likely to turn the field of regenerative medicine on its head, Harvard Stem Cell Institute (HSCI) co-director Doug Melton and post doctoral fellow Qiao "Joe" Zhou report directly turning one type of fully formed adult cell into another type of adult cell.

Register for free to listen to this article
Listen with Speechify
0:00
5:00

 

In  a feat of biological prestidigitation likely to turn the field of regenerative medicine on its head, Harvard Stem Cell Institute (HSCI) co-director Doug Melton and post doctoral fellow Qiao "Joe" Zhou report having achieved what has long been a dream and ultimate goal of developmental biologists – directly turning one type of fully formed adult cell into another type of adult cell.
 
The Melton team reports in the online edition of the journal Nature that, using a technique it is calling "direct reprogramming," the team is able to turn mouse exocrine cells, which make up about 95 percent of the pancreas, into precious and rare insulin-producing beta cells. These beta cells, which comprise about one percent of the pancreas, are the cells that die off in Type I diabetes.
 
In addition to its value for the field of regenerative medicine, the work also is a major step forward toward eventually developing a treatment for Type II – and eventually Type I – diabetes, a treatment that might someday eliminate the need for patients to constantly monitor their blood sugar and take insulin-adjusting medications, or even insulin. It is important to note, however, that there are numerous scientific hurdles that lay ahead before a treatment could be tested in humans.
 
"We’re intrigued by the possibility that this approach, which has worked for pancreatic insulin-producing cells, could be more widely applied to many kind of cells, especially those that are lost in disease or following injury," Melton said. "And at the same time, we are exploring the possibility of using this general approach in a clinical context to make new beta cells for patients."
 
Source: Harvard University