SAPH-ire Helps Scientists Prioritize Protein Modification Research

Researchers have developed a new informatics technology that analyzes existing data repositories of protein modifications and 3D protein structures to help scientists identify and target research on “hotspots” most likely to be important for biological function.

Written byGeorgia Institute of Technology
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Known as SAPH-ire (Structural Analysis of PTM Hotspots), the tool could accelerate the search for potential new drug targets on protein structures, and lead to a better understanding of how proteins communicate with one another inside cells. SAPH-ire has been tested on a well studied class of proteins involved in cellular communication, where it correctly predicted a previously-unknown regulatory element.

“SAPH-ire predicts positions on proteins that are likely to be important for biological function based on how many times those parts of the proteins have been found in a chemically-modified state when they are taken out of a cell,” explained Matthew Torres, an assistant professor in the School of Biology at the Georgia Institute of Technology. “SAPH-ire is a tool for discovery, and we think it will lead to a new understanding of how proteins are connected in cells.”

The tool and its proof-of-concept testing were reported June 12 in the journal Molecular and Cellular Proteomics. The research was supported by the National Institutes of Health’s National Institute of General Medical Sciences (NIGMS) and Georgia Tech.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image