Saving Energy, Saving Money

In 2002, when Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California, decided to build the Molecular Foundry laboratory, they employed the help of Steve Greenberg, an in-house energy management engineer.

Written bySara Goudarzi
| 9 min read
Register for free to listen to this article
Listen with Speechify
0:00
9:00

The Best Laboratory Energy Efficiency Strategies Focus on the Big Things First

In 2002, when Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California, decided to build the Molecular Foundry laboratory, they employed the help of Steve Greenberg, an in-house energy management engineer.

His role was to review designs, go through punch lists, look over construction quality control and perform submittal reviews, among other duties. This was no easy task, as LBNL had set specific sustainable design goals for design and construction of the new lab. Among these goals were achieving a U.S. Green Buildings Council (USGBC) Leadership in Energy and Environmental Design (LEED) Silver rating, minimizing energy use and rightsizing.

“It was our first time going through the LEED certification process, and we learned a lot along the way,” he says.

Sustainable design labs are especially important because laboratories are inherently high-energy users. They use anywhere from three to ten times more energy per square foot than an office building does—making labs less environmentally friendly and more costly to operate than other buildings.


The Molecular Foundry at the Lawrence Berkeley National Lab is a Department of Energy User Facility charged with providing support to nanoscience researchers in academic, government and industrial laboratories around the world. The Foundry provides users with instruments, techniques and collaborators to enhance their studies of the synthesis, characterization and theory of nanoscale materials. Photo courtesy of Lawrence Berkeley National Laboratory.

“If you look across the U.S., the average site energy for an office building is about 93,000 Btus per square foot per year,” says Paul Mathew, staff scientist and leader, Commercial Building Systems Group at Lawrence Berkeley National Laboratory. “Laboratories use anywhere from 300,000 to 800,000 Btus per square foot per year.”

“The interesting fact is that often there are really good efficiency opportunities in laboratories,” Mathew says. “They’ve been somewhat overlooked because the energy-efficiency community wanted to focus on the big parts of the pie, such as office and retail buildings and schools—there are hundreds and hundreds of thousands of those kinds of buildings.”

Additionally, because of the health and safety requirements that are inherent to labs, many saw labs as difficult sustainability projects to tackle. And when efforts were made to design greener labs, the focus often fell on easier and noncontroversial items, such as lighting—which tend to be a small portion of the problem in terms of energy efficiency in laboratories.

“What you want to focus on are the big things like ventilation, and of course that could be more involved,” Mathew says. “You [have] to make sure that any changes you make aren’t going to compromise health and safety. It is obviously a little more complicated, but there are very well-tested, proven solutions to reduce energy use for labs.”

Ventilation

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

About the Author

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image