Shape-Shifting Molecule Tricks Viruses into Mutating Themselves to Death

A newly developed spectroscopy method is helping to clarify the poorly understood molecular process by which an anti-HIV drug induces lethal mutations in the virus’ genetic material. The findings from the University of Chicago and the Massachusetts Institute of Technology could bolster efforts to develop the next generation of anti-viral treatments.

Written bySteve Koppes University of Chicago News Office
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Viruses can mutate rapidly in order to adapt to environmental pressure. This feature also helps them become resistant to anti-viral drugs. But scientists have developed therapeutic anti-viral agents for HIV, hepatitis C and influenza using a strategy called lethal mutagenesis.

This strategy seeks to extinguish viruses by forcing their already high mutation rates above an intolerable threshold. If viruses experience too many mutations, they can’t properly manage their genetic material.

“They can’t replicate and so are quickly eliminated,” said Andrei Tokmakoff, the Henry G. Gale Distinguished Service Professor in Chemistry at UChicago. “In order to make this work, you need a stealth mutagen. You need something sneaky, something that the virus isn’t going to recognize as a problem.”

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.
Add Lab Manager as a preferred source on Google

Add Lab Manager as a preferred Google source to see more of our trusted coverage.

About the Author

Related Topics

CURRENT ISSUE - January/February 2026

How to Build Trust Into Every Lab Result

Applying the Six Cs Helps Labs Deliver Results Stakeholders Can Rely On

Lab Manager January/February 2026 Cover Image