Stunning Zinc Fireworks When Egg Meets Sperm

Sparks literally fly when a sperm and an egg hit it off. The fertilized mammalian egg releases from its surface billions of zinc atoms in “zinc sparks,” one wave after another, found a Northwestern University-led interdisciplinary research team that includes experts from the U.S. Department of Energy’s Advanced Photon Source at Argonne National Laboratory.  

Written byMegan Fellman-Argonne National Laboratory News Office
| 5 min read
Register for free to listen to this article
Listen with Speechify
0:00
5:00

Using cutting-edge technology they developed, including new high-energy X-ray imaging techniques, the team is the first to capture images of these molecular fireworks and pinpoint the origin of the zinc sparks: tiny zinc-rich packages just below the egg’s surface.

Zinc flux plays a central role in regulating the biochemical processes that ensure a healthy egg-to-embryo transition, and this new unprecedented quantitative information should be useful in improving in vitro fertilization methods.

“The amount of zinc released by an egg could be a great marker for identifying a high-quality fertilized egg, something we can’t do now,” said Teresa K. Woodruff, an expert in ovarian biology and one of two corresponding authors of the study. “If we can identify the best eggs, fewer embryos would need to be transferred during fertility treatments. Our findings will help move us toward this goal.”

Woodruff is the Thomas J. Watkins Professor of Obstetrics and Gynecology and director of the Women’s Health Research Institute at Northwestern University Feinberg School of Medicine.

The study, to be published Dec. 15 by the journal Nature Chemistry, provides the first quantitative physical measurements of zinc localization in single cells in a mammal, using mouse eggs. The research team developed a suite of four physical methods to determine how much zinc there is in an egg and where it is located at the time of fertilization and in the two hours just after. Sensitive imaging methods allowed the researchers to see and count individual zinc atoms in egg cells and visualize zinc spark waves in three dimensions. 

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.
Add Lab Manager as a preferred source on Google

Add Lab Manager as a preferred Google source to see more of our trusted coverage.

About the Author

Related Topics

CURRENT ISSUE - January/February 2026

How to Build Trust Into Every Lab Result

Applying the Six Cs Helps Labs Deliver Results Stakeholders Can Rely On

Lab Manager January/February 2026 Cover Image