Supercomputers Help Researchers Identify Key Molecular Switch that Controls Cell Behavior

OAK RIDGE, Tenn., Dec. 17, 2013— If scientists can control cellular functions such as movement and development, they can cripple cells and pathogens that are causing disease in the body.

Written byOak Ridge National Laboratory
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Supported by National Institutes of Health grants, researchers at Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and the UT–ORNL Joint Institute for Computational Sciences (JICS) discovered a molecular “switch” in a receptor that controls cell behavior using detailed molecular dynamics simulations on a computer called Anton built by D. E. Shaw Research in New York City. To study an even larger signaling complex surrounding the switch, the team is expanding these simulations on the 27-petaflop, CPU–GPU machine Titan—the nation’s most powerful supercomputer, managed by the Oak Ridge Leadership Computing Facility at ORNL.

Researchers identified the molecular switch on Anton (which was designed to perform speedy molecular dynamics simulations) by simulating 140,000 atoms that make up the signaling part of the Tsr chemoreceptor that controls motility in E. coli. Like other receptors, Tsr spans the cell membrane, communicating to proteins inside the cell in order to respond to threats or opportunities in the environment.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image