Synchrotron Infrared Unveils a Mysterious Microbial Community

Berkeley Lab scientists join an international collaboration to understand how archaea and bacteria work together deep in a cold sulfur spring.

Written byLawrence Berkeley National Laboratory
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Berkeley Lab scientists join an international collaboration to understand how archaea and bacteria work together deep in a cold sulfur spring

In the fall of 2010, Hoi-Ying Holman of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) was approached by an international team researching a mysterious microbial community discovered deep in cold sulfur springs in southern Germany.

“They told me what they were doing and said, ‘We know what you contributed to the oil-spill research,’” recalls Holman, who heads the Chemical Ecology group in Berkeley Lab’s Earth Sciences Division. “They wondered if I could help them determine the biochemistry of their microbe samples.”

Holman had co-authored a report in Science about bacteria in the Gulf of Mexico that thrived on the Deepwater Horizon oil plume. Using infrared spectromicroscopy at the Berkeley Synchrotron Infrared Structural Biology (BSISB) facility, which she directs at the Advanced Light Source (ALS), Holman helped determine how the novel bug obtained energy by eating the spilled crude. No stranger to subsurface bioscience, Holman would soon add a new actor to her cast of remarkable microbes.

Not extreme, but weird anyway

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image