The Play-by-Play of Energy Conversion: Catching Catalysts in Action

The whistle blows and the big game begins on TV. You watch the punted football sail over the field and into the arms of the opposing team—then the feed abruptly cuts out. The information blackout is apparently universal, with no coverage online or on the radio. Hours later, the signal returns and you learn that your beloved home team pulled off a stunning, come-from-behind victory. But here’s the kicker: there’s no way to find out the play-by-play. Did the quarterback’s last-second Hail-Mary pass decide the game, or was it a devastating interception returned for a touchdown?

Written byBrookhaven National Laboratory
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Believe it or not, catalytic chemical reactions can fall into a similar blackout, but watching the “game” is trickier than buying a ticket or tuning in on the television. Before catalysis unfolds in a laboratory, scientists painstakingly assemble the materials and spark a reaction. But like that lost signal, many experimental techniques only capture the static details before and after the reaction. Now, researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have demonstrated an unprecedented ability to peer into the dynamic, real-time reactions blazing along at scales spanning just billionths of a meter.

“For the first time, a comprehensive set of tools is available for exploring correlations among the morphological, structural, electronic, and chemical properties of catalytic materials under working conditions,” said Darío Stacchiola, a Brookhaven Lab chemist and coauthor on two recent studies. “These in situ studies allow us to propose reaction mechanisms and help guide the design of more efficient catalysts.”

The two studies—published in Angewandte Chemie and the Journal of the American Chemical Society—used microscopy and spectroscopy to catch custom-built catalysts during processes that could play a crucial role in securing sustainable sources of energy. The results not only demonstrate an experimental breakthrough, but they may also lead to better-than-ever methods of distilling hydrogen or purifying exhaust gases from cars.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image