Scientist Proposes Revolutionary Naming System for All Life on Earth

The proposed naming process begins by sampling and sequencing an organism’s DNA. The sequence is then used to generate a code unique to that individual organism based on its similarity to all previously sequenced organisms.

Written byVirginia Tech
| 7 min read
Register for free to listen to this article
Listen with Speechify
0:00
7:00

BLACKSBURG, Va., Feb. 24, 2014 – A Virginia Tech researcher has developed a new way to classify and name organisms based on their genome sequence and in doing so created a universal language that scientists can use to communicate with unprecedented specificity about all life on Earth.

In a paper published in the journal PLoS ONE, Boris Vinatzer proposes moving beyond the current biological naming system to one based on the genetic sequence of each individual organism. This creates a more robust, precise, and informative name for any organism, be it a bacterium, fungus, plant, or animal.

Vinatzer, an associate professor in the College of Agriculture and Life Science’sDepartment of Plant Pathology, Physiology, and Weed Science, suggests a new model of classification that not only crystalizes the way we identify organisms but also enhances and adds depth to the naming convention developed by the godfather of genus, Carl Linnaeus. Scientists worldwide have used the system that Linnaeus created for more than 200 years.

“Genome sequencing technology has progressed immensely in recent years and it now allows us to distinguish between any bacteria, plant, or animal at a very low cost," said Vinatzer, who is also with the Fralin Life Science Institute.  “The limitation of the Linnaeus system is the absence of a method to name the sequenced organisms with precision.”

Vinatzer does not propose changing the naming convention of existing biological classification. Instead, the new naming system is meant to add further information to classify organisms within named species and to more rapidly identify new ones since the process depends solely on the organism’s genetic code.

A genome-based naming system could be particularly helpful to public health officials who live in an age of constant vigilance against biological threats. In his paper, Vinatzer used the anthrax strain that appeared in the wake of the Sept. 11 terrorist attacks as an example of the limitations of the current taxonomy-based system.

Weaponized anthrax frustrated officials as the powder found its way to offices in the United States and the ensuing investigation took months for law enforcement to identify the origin of the original pathogen as the Ames strain.

More than 1,200 strains of anthrax — or Bacillus anthracis — exist. Each one possesses an arbitrary name chosen by researchers that does nothing to illuminate genetic similarities.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image