Voyager 1 Magnetic Data Surprise Intrigues Researchers

A University of Alabama in Huntsville graduate student and a recent UAH doctoral graduate are exploring surprising data from Voyager 1's crossing of the heliopause into the interstellar medium of our galaxy.

Written byUniversity of Alabama in Huntsville
| 6 min read
Register for free to listen to this article
Listen with Speechify
0:00
6:00

HUNTSVILLE, Ala. (Sept. 24, 2013) - A University of Alabama in Huntsville graduate student and a recent UAH doctoral graduate are exploring surprising data from Voyager 1's crossing of the heliopause into the interstellar medium of our galaxy.

Most surprising to the scientists is why a dramatic shift in the magnetic field that they had modeled and were expecting after the craft left the dominant influence of the Sun's heliosphere did not occur, even though the plasma density surrounding the craft changed as expected.

Eric Zirnstein, University of Alabama in Huntsville physics graduate student and NASA Earth and Space Science Fellow in Heliophysics, and May UAH doctoral graduate Brian Fayock, who now does data analysis for NASA, are comparing data from different sources with models they have created to try to understand what's happening.

Imagine a bubble of gas underwater - the surface between the gas bubble and the water corresponds to the heliopause. The heliopause separates regions of different gases. In the case of the Voyager 1 crossing, the heliopause separates material created by the sun from material that surrounds the stars throughout the galaxy. Because the sun is moving through the interstellar medium, it creates a bow wave as well. Outside the heliosphere, there is a 40-fold increase in plasma density.

Recently, NASA announced that measurements of the effects on Voyager 1 of a March 2012 coronal mass ejection indicated that it had ventured beyond the heliopause, to begin its venture out into interstellar space. At the heliopause, the influence of the solar wind is no longer great enough to push back the gas and plasma created by other stars. When Voyager 1 will be completely beyond the influence of the sun is unknown.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image