Wayne State Receives $1.85 Million NIH Grant to Identify Novel Antibiotic Targets

Antibiotics work in different ways, but some can attack the very basic process of making new proteins in bacterial cells

Written byWayne State University
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

Jared Schrader, PhDJared Schrader, PhD, assistant professor of biological sciences in Wayne State’s College of Liberal Arts and Sciences.Photo courtesy of Wayne State UniversityA research team from Wayne State University has received a $1.85 million grant from the National Institute of General Medical Sciences of the National Institutes of Health for the project “Mechanisms of Non-Shine-Dalgarno Translation Initiation.” The project will be led by Jared Schrader, PhD, assistant professor of biological sciences in Wayne State’s College of Liberal Arts and Sciences.

Antibiotics work in different ways, but some can attack the very basic process of making new proteins in bacterial cells. These antibiotics block translation, in which the cell reads information from a messenger RNA (mRNA) molecule, which it uses to build a protein. When antibiotics are taken, the antibiotic molecule will latch onto key translation molecules inside of bacterial cells and stall them so that proteins cannot be made, ultimately stopping the bacteria from functioning and causing it to eventually die.

In the model bacterium E. coli, it was discovered that a special sequence of RNA called a Shine-Dalgarno sequence is needed to dictate the ribosome on where to start decoding an mRNA into a protein.

Lab manager academy logo

Lab Quality Management Certificate

The Lab Quality Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

The Shine-Dalgarno sequence is a ribosomal binding site in bacterial and archaeal messenger RNA. The RNA sequence helps recruit the ribosome to the mRNA to initiate protein synthesis by aligning the ribosome with the start codon.

“While the Shine-Dalgarno model is widely accepted as textbook knowledge for bacterial translation, genome sequencing of tens of thousands of bacterial species has revealed that many organisms, including many pathogens, lack Shine-Dalgarno sites in most of their mRNAs,” said Schrader. ”Without a Shine-Dalgarno, it’s unclear how these bacteria are able to make the proteins encoded in their genomes.”

Schrader and his collaborators aim to determine the molecular mechanisms of non-Shine-Dalgarno initiation in hopes to identify novel antibiotic targets effective against these groups of pathogens.

“Through our work, we have an exciting downstream possibility that what we uncover will allow us to design antibiotics that specifically target non-Shine-Dalgarno translation machinery,” said Schrader. “This will open the door to new antibiotic treatments where bacteria have become difficult to treat or even resistant to antibiotics currently available.”

Interested in life sciences?

Subscribe to our free Life Sciences Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By subscribing, you agree to receive email related to Lab Manager content and products. You may unsubscribe at any time.

The grant number for this National Institutes of Health project is GM124733.

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image