Welcome to the DarkSide: Project Aims to Find Particles of Dark Matter

In a laboratory under a mountain 80 miles east of Rome this fall, a Princeton-led international team switched on a new experiment aimed at finding a mysterious substance that makes up a quarter of the universe but has never been seen.

Written byPrinceton University
| 8 min read
Register for free to listen to this article
Listen with Speechify
0:00
8:00

The experiment, known as DarkSide-50, is searching for particles of dark matter. For the last several decades, researchers have known that visible matter — the stuff we can see — makes up only 4 percent of the universe, while dark energy is thought to make up about 73 percent. Dark matter is thought to make up the remaining 23 percent, and finding it, researchers say, will solidify our understanding of how the universe formed and shed light on its ultimate fate.

"This is like the search for the Higgs boson was 10 years ago," said Peter Meyers, a professor of physics at Princeton University and one of the lead scientists on the project. "We have a good idea of what to look for, but we don't know exactly where or when we will find it."

Housed inside a cavernous chamber in Italy's Gran Sasso National Laboratory, the DarkSide-50 collaboration involves 17 American institutions as well the Italian Institute for Nuclear Physics and other institutions in Italy, France, Poland, Ukraine, Russia and China, as shown in a list of the participating organizations (.pdf). The research team includes postdocs, staff researchers and several graduate and undergraduate students from Princeton.

The researchers spent last summer assembling the detector, which consists of three fluid-filled chambers nested one inside the other like Russian dolls. Now that the experiment is up and running, the waiting begins. Unlike the massive Large Hadron Collider that discovered the Higgs, DarkSide-50 doesn't smash anything. Instead, it is designed to detect dark matter particles that drift through its chambers.

Looking for WIMPs

The evidence for dark matter dates to the 1930s, when astronomers realized that the amount of matter we can see — as planets, stars and galaxies — falls far short of what must be out there to give galaxies their characteristic spiral shapes and clustering patterns.

Without this missing matter, the galaxies should have flown apart long ago. Matter provides the gravity that keeps the stars in rotation around the galaxy's center. Unless our theories of gravity are wrong — and a minority of physicists think that is a possibility — dark matter must exist.

"Finding dark matter particles would help confirm our understanding of the universe," said Cristiano Galbiati, an associate professor of physics at Princeton. "And, whether or not we find it, we will have learned a great deal about how to go about looking for it. This is as exciting a moment in the search for dark matter as there has ever been."

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image