A Cancer Research Team Hits Its Target

Scientists are developing a unique targeting and delivery system that uses a peptide, or amino acid chain, to seek and destroy cancer cells

Written byLehigh University
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

The treatments for cancer, says Damien Thévenin of Lehigh University, can sometimes seem worse than the disease itself.

Patients undergoing chemotherapy, he notes, suffer nausea, fatigue, loss of bone marrow and other side effects as the “chemo” kills good cells and bad alike.

Other therapies seek to target and kill cancer cells by employing antibodies that “recognize” receptors on the membrane of cancer cells and release drugs only inside those cells. But cancer cell membrane receptors come in many varieties, says Thévenin. Cancer cells from different tumors have different receptors, and even cancer cells in the same tumor can also have different receptors.

“You have to know the kind of cancer a patient has and fit the targeting strategy to the cancer,” says Thévenin, an assistant professor of chemistry. “This requires a biopsy, a genomic analysis and drug targeting that is very specific to the type of cancer. All of this is labor-intensive and very expensive. In addition, while this strategy can be successful, it only works against very specific types of cancers.”

In the past two decades, Thévenin and other scientists have turned their attention to pH. The extracellular environments of almost all cancers, Thévenin says, have a lower pH than the environments of healthy cells, making them more acidic and giving cancer drugs a broader, more general target to aim at.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image