Automated Detection of Drug-Induced Lysosomal Cytotoxicity - Automation of the Lyso-ID Red Assay Using the EL406 Combination Washer Dispenser

Almost all drug compounds will elicit deleterious effects on cells at some concentration. Lysosome perturbation as a result of ion trapping of amine containing compounds has been demonstrated to cause the formation of autophagosomes and autophagic cytopathology. Here we describe the use of the EL406 Combination Washer Dispenser to automatically aspirate media, wash cells and dispense reagents for the Lyso-ID Red Detection kit, part of the CELLestial Live Cell Analysis platform from Enzo Life Sciences.

Written byLab Manager
| 6 min read
Register for free to listen to this article
Listen with Speechify
0:00
6:00

Authors: Paul Held, BioTek Instruments, Inc., Winooski, VT; Kheng Newick, University of Vermont, Burlington, VT; Dee Shen and Wayne Patton, Enzo Life Sciences, Farmingdale, NY

Abstract

Almost all drug compounds will elicit deleterious effects on cells at some concentration. Lysosome perturbation as a result of ion trapping of amine containing compounds has been demonstrated to cause the formation of autophagosomes and autophagic cytopathology. Here we describe the use of the EL406™ Combination Washer Dispenser to automatically aspirate media, wash cells and dispense reagents for the Lyso-ID® Red Detection kit, part of the CELLestial® Live Cell Analysis platform from Enzo Life Sciences.

Introduction

The identification of cytotoxic effects is a critical element in the pre-clinical small molecule drug discovery process. In-vitro cell-based assays are typically used early in the process following screening which requires the ability to automate workflows to handle the number of compounds tested. Cytotoxic effects of drug molecules are often first observed as perturbations of normal cellular organelle functionality. For example, lysosome perturbation as a result of ion trapping of amine containing compounds has been demonstrated to cause the formation of autophagosomes and autophagic cytopathology.

Cationic amphiphilic compounds (i.e. small molecule drug compounds) can be absorbed by cells by simple diffusion and accumulate inside the acidic cellular organelles, a process referred to as lysosomotropism. While many drugs require the presence of a cationic moiety for bioactivity, their accumulation into subcellular organelles can lead to many undesirable effects [1]. Numerous cationic amphiphilic drugs are known to trigger phospholipidosis, which is typified by excessive intracellular accumulation of phospholipids as lamellar bodies [2]. While the origins of these lamellar bodies remain unknown, they appear to be an adaptive response to the presence of the drug [3] (Figure 1). Similarly, autophagy, which can be induced by external or internal stimuli, is a natural pathway that is mediated by lysosomal degradation of sequestered cytoplasmic components. Inappropriate autophagy has been associated with a number of disease states including Huntington’s chorea, cancer and cardiac myopathy.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image