Berkeley Lab Sensors Enable First Light for the Dark Energy Camera

DECam, the most powerful sky survey instrument yet built, depends on Berkeley Lab’s red-sensitive astronomical CCDs.

Written byOther Author
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

DECam, the most powerful sky survey instrument yet built, depends on Berkeley Lab’s red-sensitive astronomical CCDs

Early in the morning of September 12 the Dark Energy Camera (DECam), mounted on the Victor Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile, recorded its first images of a southern sky spangled with galaxies. Galaxies up to eight billion light years away were captured on DECam’s focal plane, whose imager consists of 62 charge-coupled devices (CCDs) invented and developed by engineers and physicists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).

Berkeley Lab CCDs are noted for their exceptionally high sensitivity to light (quantum efficiency), particularly in the red and infrared regions of the spectrum – a crucial advantage for astronomical CCDs searching for objects at extremely high redshifts. Combining the 570-million-pixel focal plane made of Berkeley Lab CCDs with the light-gathering power of the Blanco telescope’s 4-meter mirror, DECam has unique ability to reach wide and deep into the night sky.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image