People running on a road at sunset

Bioinspired Protein Creates Stretchable 2D Layered Materials

These 2D composites could be used for flexible circuit boards, wearable devices, and other equipment

Written byPenn State
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

UNIVERSITY PARK, PA — Nature creates layered materials like bone and mother-of-pearl that become less sensitive to defects as they grow. Now researchers have created, using biomimetic proteins patterned on squid ring teeth, composite layered 2D materials that are resistant to breaking and extremely stretchable.

"Researchers rarely reported this interface property for the bone and nacre because it was difficult to measure experimentally," said Melik Demirel, Lloyd and Dorothy Foehr Huck Chair in Biomimetic Materials and director of the Center for Advanced Fiber Technologies, Penn State.

Lab manager academy logo

Lab Management Certificate

The Lab Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

Composite 2D materials are made up of atom-thick layers of a hard material, like graphene or a MXene—usually a transition metal carbide, nitride, or carbonitride—separated by layers of something to glue the layers together. While large chunks of graphene or MXenes have bulk properties, 2D composites' strength comes from interfacial properties.

"Because we are using an interfacial material that we can modify by repeating sequences, we can fine tune the properties," said Demirel. "We can make it very flexible and very strong at the same time."

He noted that the materials can also have unique thermal conduction regimes, or properties, spreading heat in one direction more strongly than at 90 degrees. The results of this work were published in the Proceedings of the National Academy of Sciences.

"This material would be great for insoles for running shoes," said Demirel. "It could cool the foot and the repeated flexing would not break the insole."

Interested in chemistry and materials science?

Subscribe to our free Chemistry & Materials Science Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By subscribing, you agree to receive email related to Lab Manager content and products. You may unsubscribe at any time.

These 2D composites could be used for flexible circuit boards, wearable devices, and other equipment that requires strength and flexibility.

According to Demirel, traditional continuum theory does not explain why these materials are both strong and flexible, but simulations demonstrated that the interface matters. What apparently happens is that with a higher percent of the material composed of the interface, the interface breaks in places when the material is under stress, but the material as a whole does not break.

"The interface breaks, but the material doesn't," said Demirel. "We expected them to become compliant, but all of a sudden it is not only compliant, but super stretchy."

Others working on this project form Penn State were Mert Vural, postdoctoral fellow; Tarek Mazeed, postdoctoral fellow; Oguzhan Colak, graduate student; and Reginald F. Hamilton, associate professor all in Engineering Science and Mechanics.

Also working on this research were Dong Li, and Huajian Gao, professor of mechanical and aerospace engineering, both at Nanyang Technological University, Singapore.

- This press release was originally published on the Penn State website

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image