Digital In-Line Holography Helps Researchers ‘See’ into Fiery Fuels

Transportation accidents, such as trucks crashing on a highway or rockets failing on a launch pad, can create catastrophic fires. It’s important to understand how burning droplets of fuel are generated and behave in those extreme cases, so Sandia National Laboratories researchers have developed 3-D measurement techniques based on digital in-line holography.

Written bySandia National Laboratories
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Digital in-line holography, known as DIH, is a laser-based technique that has been around since the 1990s. Sandia advanced the technique with new algorithms to mine critical information from recorded holograms and new applications in tough fire environments, said Daniel Guildenbecher, a researcher in thermal/fluid experimental sciences.

“We live in a 3-D world and if you think of traditional imaging, it’s 2-D,” he said. “This technique is one of the few that can give you a 3-D measurement of a flow such as a fire.”

DIH passes a laser through a particle field. The interaction between the laser and the particles creates diffraction patterns, which a camera records. Then researchers use computers to solve diffraction integral equations, allowing them to take light recorded at the camera plane and refocus it back to the original planes of the particle locations. That gives the position of particles as they were in 3-D space.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image