Everything Will Connect to the Internet Someday, and this Biobattery Could Help

The Internet of Disposable Things is a phenomenon in which wireless sensors are attached to nearly any type of device in order to provide up-to-date information via the internet

Written byBinghamton University
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

BiobatteryThis solid phase bacteria-powered biobattery could be a low-cost power source for the Internet of Disposable Things.Sean Choi

In the future, small paper and plastic devices will be able to connect to the internet for a short duration, providing information on everything from healthcare to consumer products, before they are thrown away. Researchers at Binghamton University, State University of New York have developed a micro biobattery that could power these disposable sensors.

The Internet of Disposable Things is a phenomenon in which wireless sensors are attached to nearly any type of device in order to provide up-to-date information via the internet. For example, a sensor could be attached to food packaging to monitor the freshness of the food inside.

Interested in chemistry and materials science?

Subscribe to our free Chemistry & Materials Science Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

"Internet of Disposable Things (IoDT) is a new paradigm for the rapid evolution of wireless sensor networks," said Seokheun Choi, associate professor of electrical and computer engineering at Binghamton University. "This novel technique, constructed in a small, compact, disposable package at a low price point, can connect things inexpensively to function for only a programmed period and then be readily thrown away."

Choi's previous small-size microbial fuel cells suffered from low power density and energy-intensive fluidic feeding operation, so he thought that a small-power, disposable, solid-state battery-type microbial fuel cell platform without the fluidic system would be more applicable and potentially realizable.

"Previously, my group had two directions: 1) disposable paper-based biobatteries for single-use low-power systems (e.g. biosensors) and 2) long-term microbial fuel cells for sustainable applications," said Choi. "The biobattery we developed this time was a kind of combined technique of those two; the power duration was significantly enhanced by using solid-state compartments but the device is a form of a battery without complicated energy-intensive fluidic feeding systems that typical microbial fuel cells require."

"Current IoDTs are mostly powered by expensive and environmentally-hazardous batteries, thus, ultimately leading to significant cost increases and environmental issues for their large-scale deployment," added Choi. "Our biobattery is low-cost, disposable and environmentally-friendly."

Choi is in the process of integrating serially connected biobatteries with a DC-DC converter.

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - April 2025

Sustainable Laboratory Practices

Certifications and strategies for going green

Lab Manager April 2025 Cover Image