Labmanager Logo
microscopic image of gold nanoparticle decorated polymer particles, which are mostly pink and spherical in shape with their surfaces dotted with many bright spots, on a black background

Hiroshi Yabu

Good as Gold—Improving Infectious Disease Testing with Gold Nanoparticles

New method called self-organized precipitation allows for more efficient use of AU-NP in disease ?detection techniques

| 2 min read
Share this Article
Register for free to listen to this article
Listen with Speechify
0:00
2:00

By harnessing the power of composite polymer particles adorned with gold nanoparticles, a group of researchers have delivered a more accurate means of testing for infectious diseases.

Details of their research were recently published in the journal Langmuir.

Lab manager academy logo

Get training in Lab Crisis Preparation and earn CEUs.

One of over 25 IACET-accredited courses in the Academy.

Certification logo

Lab Crisis Preparation course

The COVID-19 pandemic reinforced the need for fast and reliable infectious disease testing in large numbers. Most testing done today involves antigen-antibody reactions. Fluorescence, absorptions, or color particle probes are attached to antibodies. When the antibodies stick to the virus, these probes visualize the virus's presence. In particular, the use of color nanoparticles is renowned for its excellent visuality, along with its simplicity of implementation, with little scientific equipment needed to perform lateral flow tests.

Gold color nanoparticles (AU-NP), with their high chemical stability and unique plasmon absorption, are widely employed as probes in immunoassay tests. They exhibit extreme versatility, with their colors fluctuating according to their size and shape. Additionally, their surface can be modified by using thiol compounds.

Conventional tests that use AU-NP often have to amplify AU-NP's optical density so that scientists can easily measure the strength of the signal produced by the interaction between antibodies and the target substance.

Adding more gold nanoparticles is one means to do this. But because nanoparticles are tiny, it requires a large quantity of them to achieve a strong enough signal for accurate detection.

To overcome this, the researchers proposed a new method called self-organized precipitation (SORP). SORP works by dissolving polymers into organic solvents before adding a liquid that doesn't dissolve the polymers well, like water. After the original organic solvent is removed by evaporation, polymers assemble together, forming tiny particles.

Interested in Biopharma News?

Subscribe to our free Biopharma Tools and Techniques newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

"Using gold nanoparticle decorated polymers (GDNP) assembled by SORP, we set out to see how effective they would be in detecting the influenza virus, and whether they offered improved sensitivity in detecting antigen-antibody reactions," states Hiroshi Yabu, co-author of the paper and professor at Tohoku University's Advanced Institute for Materials Research (AIMR). "And it did. Our method resulted in a higher optical density than original AU-NPs and GNDPs decorated with smaller AU-NPs."

Yabu and his colleagues' findings reinforce that GNDP particles have broad utility, extending beyond laboratory settings to real-world diagnostic scenarios.

- This press release was originally published on the Tohoku University website and has been edited for style and clarity

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - December 2024

2025 Industry and Equipment Trends

Purchasing trends survey results

Lab Manager December 2024 Cover Image
Lab Manager Biopharma eNewsletter

Stay Connected with Biopharma News

Click below to subscribe to Biopharma Tools and Techniques eNewsletter!

Subscribe Today