How a Mutant Worm’s Reaction to a Foul Smell Could Lead to New Treatment Avenues for Disease

Multi-year research project could one day open new treatment avenues for diseases ranging from schizophrenia to Parkinson’s

Written byUniversity at Buffalo
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

BUFFALO, N.Y. — Several years ago, University at Buffalo biologists noticed something odd.

They were studying how a worm called C. elegans would react when different genes were deleted from its DNA. One particularly interesting deletion resulted in nematodes with a heightened sense of smell: They backed away from repulsive odors unusually fast.

The lead researchers, Denise Ferkey and Michael Yu, took note; they had seen this behavior before.

In prior, unrelated experiments, the same species of worm had become hypersensitive to smell when its nerve cells experienced problems with dopamine signaling, a cellular process that helps control how readily cells can communicate with one another.

The researchers wondered: Was a similar issue at play again?

That question — and that curiosity — led the scientists on a multi-year research project that could one day open new treatment avenues for diseases ranging from schizophrenia to Parkinson’s.

Missing gene alters dopamine signaling

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image