Silhouette of woman wiping sweat off her brow

Human Activities Increase Likelihood of More Extreme Heatwaves

The same factors that caused the 2021 North American heatwave may explain the U.K.’s current heatwave

Written byInstitute of Atmospheric Physics, Chinese Academy of Sciences
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

July 19 was the hottest day ever recorded in the United Kingdom, with temperatures surpassing 40°C (about 104°F). The heatwave serves as an early preview of what climate forecasters theorized will be typical summer weather in the U.K. in 2050. The heat continues across Europe today, as well as in the United States, where more than a third of the country is under heat warnings.

The temperatures hearken back to just over a year ago when nearly 1,500 people died during a late June heatwave that more than doubled average temperatures in the United States and Canada.

Lab manager academy logo

Advanced Lab Management Certificate

The Advanced Lab Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

Will temperatures continue to rise, leading to more frequent extreme heat events?

Yes, according to the latest analysis of the atmospheric circulation patterns and human-caused emissions that led to the 2021 heatwave in North America. The findings, published on July 22 in Advances in Atmospheric Sciences, may also explain the U.K.'s current heatwave.

The research team found that greenhouse gases are the primary reason for increased temperatures in the past and will likely continue to be the main contributing factor, with simulations showing that extreme heatwave events will increase by more than 30 percentage points in the coming years.

“An extraordinary and unprecedented heatwave swept western North America in late June of 2021, resulting in hundreds of deaths and a massive die-off of sea creatures off the coast as well as horrific wildfires,” said lead author Chunzai Wang, a researcher in the Southern Marine Science and Engineering Guangdong Laboratory and head of the State Key Laboratory of Tropical Oceanography at the South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS).

lab design news logo

Interested in lab design?

Sign up for the free Lab Design Newsletter from our sister site, Lab Design News.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By completing this form, you agree to receive news updates and relevant promotional content from Lab Design News. You may unsubscribe at any time. View our Privacy Policy

“In this paper, we studied the physical processes of internal variability, such as atmospheric circulation patterns, and external forcing, such as anthropogenic greenhouse gases,” Wang said.

Atmospheric circulation patterns describe how air flows and influences surface air temperatures around the planet, both of which can change based on natural warming from the Sun and atmospheric internal variability, as well as Earth’s rotation. These configurations are responsible for daily weather as well as the long-term patterns comprising climate. Using observational data, the researchers identified that three atmospheric circulation patterns co-occurred during the 2021 heatwave: the North Pacific pattern, the Arctic-Pacific Canada pattern, and the North America pattern.

“The North Pacific pattern and the Arctic-Pacific Canada pattern co-occurred with the development and mature phases of the heatwave, whereas the North America pattern coincided with the decaying and eastward movements of the heatwave,” Wang said. “This suggests the heatwave originated from the North Pacific and the Arctic, while the North America pattern ushered the heatwave out.”

But atmospheric circulation patterns can co-occur — and have before — without triggering an extreme heatwave, so how much was the 2021 event influenced by human activities? Wang and the team used the internationally curated, tested, and assessed models from the World Climate Research Programme, specifically the Detection Attribution Model Comparison models of the Coupled Model Intercomparison Project Phase 6 (CMIP6).

“From the CMIP6 models, we found that it is likely that global warming associated with greenhouse gases influences these three atmospheric circulation pattern variabilities, which, in turn, led to a more extreme heatwave event,” Wang said. “If appropriate measures are not taken, the occurrence probability of extreme heatwaves will increase and further impact the ecological balance, as well as sustainable social and economic development.”

Other contributors include co-corresponding author Jiayu Zheng and two students from the University of CAS, Wei Lin and Yuqing Wang.

- This press release was provided by  the Institute of Atmospheric Physics, Chinese Academy of Sciences

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image