In Metallic Glasses, Researchers Find a Few New Atomic Structures

Drawing on powerful computational tools and a state-of-the-art scanning transmission electron microscope, a team of materials science and engineering researchers has discovered a new nanometer-scale atomic structure.

Written byUniversity of Wisconsin-Madison
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Drawing on powerful computational tools and a state-of-the-art scanning transmission electron microscope, a team of University of Wisconsin-Madison and Iowa State University materials science and engineering researchers has discovered a new nanometer-scale atomic structure in solid metallic materials known as metallic glasses.

Published May 11 in the journal Physical Review Letters, the findings fill a gap in researchers' understanding of this atomic structure. This understanding ultimately could help manufacturers fine-tune such properties of metallic glasses as ductility, the ability to change shape under force without breaking, and formability, the ability to form a glass without crystalizing.

Glasses include all solid materials that have a non-crystalline atomic structure: They lack a regular geometric arrangement of atoms over long distances. "The fundamental nature of a glass structure is that the organization of the atoms is disordered-jumbled up like differently sized marbles in a jar, rather than eggs in an egg carton," says Paul Voyles, a UW-Madison associate professor of materials science and engineering and principal investigator on the research.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image