INSIGHTS on HPLC and UHPLC Systems

The pros and cons of high-performance liquid chromatography (HPLC) compared with ultra-high performance LC (UHPLC) are by now the stuff of legend.

Written byAngelo DePalma, PhD
| 10 min read
Register for free to listen to this article
Listen with Speechify
0:00
10:00

Solid Choices for Chemical, Biochemical Analysis

Cost of ownership has always been a factor in purchasing LC systems, says Bill Foley, senior director, separations product management, at Waters (Milford, MA). But today, as major LC markets become increasingly cost-conscious, lab managers can justify more expensive UHPLC based on value. “More than ever, UHPLC systems are easier to justify from the perspective of cost of ownership.”

Perhaps the most tangible, measurable benefit to UHPLC is reduced solvent usage. Labs pay for solvents coming and going; HPLC/UHPLC-grade solvents are expensive to acquire and costly to dispose of. Supplies of acetonitrile, a preferred LC solvent, are back up after the shortages of several years ago, but prices have not fallen in step with rising inventories of the solvent.

According to Foley, labs that invest in new UPLC® (a Waters trademark, versus the generic UHPLC) systems can save 90 percent or more on solvents. Savings are even greater for Waters’ supercritical carbon dioxide-based ACQUITY UPC2® systems—what Waters has termed “convergence chromatography.”

UPC2 systems are identical to UPLC in hardware design. While supercritical chromatography systems have a reputation for extreme operating conditions, pressures are around the same, or lower, as they are for UHPLC.

Throughput and sensitivity are common selling points for UHPLC. Run times are significantly shorter, resulting in fivefold or higher raw throughput. Yet realworld improvements vary according to several factors. One is instrument location. Users who in the past could access an HPLC on the next bench may now have to walk down the hall to use or check on the availability of the replacement UHPLC.

Another factor relates to whether the UHPLC replaces HPLCs dedicated to one specific method. This would not normally be problematic when both instruments employ the same column and mobile phase. But sometimes they don’t, and users can be picky about how colleagues maintain the instrument.

Waters therefore takes a conservative position on how many HPLCs a UHPLC can replace, so while run times may be shorter by a factor of five or more, the company’s official stance is that one UHPLC can replace two HPLCs and, under ideal circumstances, possibly three.

Not on pressure, particle size alone

During the early days of HPLC, the “P” in the abbreviation stood for “pressure” but eventually gave way to “performance.” Perhaps this historical fact and UHPLC’s use of very high pressures led to the mistaken belief that UHPLC’s superior performance was solely a result of pressure (and small particle size stationary phases).

Not true. As Jason Weisenseel, PhD, chromatography technical leader for aftermarkets at Perkin Elmer (Orlando, FL), notes, a major factor in UHPLC’s effectiveness lies in the super-low system dead volume, which produces tighter bands. “When they’re tighter they’re taller as well, and sensitivity rises,” Weisenseel observes.

Weisenseel relates that during the 1980s and 1990s, as HPLC systems became more robust, users became complacent about sample preparation. But the advent of Waters’ UPLC in 2004 required users to rethink sample prep. “Operators must be more careful of sample and mobile phase cleanliness than they need to be with HPLC.”

Columns are the component most susceptible to damage through particle buildup. “Injecting an untreated, nasty matrix can clog columns irreversibly. Tubing is susceptible as well,” Weisenseel says.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

About the Author

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image