Nanoparticle ‘Wrapper’ Delivers Chemical that Stops Fatty Buildup in Rodent Arteries

Experimental therapy restores normal fat metabolism in animals with atherosclerosis.

Written byJohns Hopkins University School of Medicine
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

In what may be a major leap forward in the quest for new treatments of the most common form of cardiovascular disease, scientists at Johns Hopkins University report they have found a way to halt and reverse the progression of atherosclerosis in rodents by loading microscopic nanoparticles with a chemical that restores the animals’ ability to properly handle cholesterol.

Cholesterol is a fatty substance that clogs, stiffens and narrows the blood vessels, greatly diminishing their ability to deliver blood to the heart muscle and the brain. The condition, known as atherosclerotic vessel disease, is the leading cause of heart attacks and strokes that claim some 2.6 million lives a year worldwide, according to the World Health Organization.

A report on the work, published online in the journal Biomaterials, builds on recent research by the same team that previously identified a fat-and-sugar molecule called GSL as the chief culprit behind a range of biological glitches that affect the body’s ability to properly use, transport and purge itself of vessel-clogging cholesterol.

That earlier study showed that animals feasting on high-fat foods remained free of heart disease if pretreated with a man-made compound, D-PDMP, which works by blocking the synthesis of the mischievous GSL.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image