Neutron Experiments Give Unprecedented Look at Quantum Oscillations

Researchers at the Department of Energy's Oak Ridge National Laboratory have found that nitrogen atoms in the compound uranium nitride exhibit unexpected, distinct vibrations that form a nearly ideal realization of a physics textbook model known as the isotropic quantum harmonic oscillator.

Written byOther Author
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

OAK RIDGE, Tenn., Oct. 23, 2012 — Researchers at the Department of Energy's Oak Ridge National Laboratory have found that nitrogen atoms in the compound uranium nitride exhibit unexpected, distinct vibrations that form a nearly ideal realization of a physics textbook model known as the isotropic quantum harmonic oscillator. In the experiment on the uranium nitride crystal -- with each of the light nitrogen atoms centered in a cage of heavier uranium atoms -- neutron scattering at ORNL's Spallation Neutron Source (SNS) revealed an unexpected series of distinct and evenly spaced oscillations: The nitrogen atom vibrates like a molecular-level ball on a spring.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - November/December 2025

AI & Automation

Preparing Your Lab for the Next Stage

Lab Manager Nov/Dec 2025 Cover Image