New Algorithm Helps to Detect, Analyze Suspicious Activity in Surveillance Footage

Traditional surveillance cameras do not always detect suspicious activities or objects in a timely manner

Written byBinghamton University
| 1 min read
Register for free to listen to this article
Listen with Speechify
0:00
1:00

surveillance

New research from Binghamton University, State University of New York, could make it easier to track and process suspicious activity in surveillance footage.

Traditional surveillance cameras do not always detect suspicious activities or objects in a timely manner. To combat this issue, Binghamton University associate professor of Electrical and Computer Engineering Yu Chen and his team developed a hybrid lightweight tracking algorithm known as Kerman (Kernelized Kalman filter). The research uses single board computers (SBCs) mounted on surveillance cameras to process videos and extract features that focus on enhanced detection of people, tracking their movement and recognizing behaviors for increased surveillance coverage.

Lab manager academy logo

Lab Management Certificate

The Lab Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

"The Kerman algorithm enables the smart cameras at the edge (the source of data generation) to raise an alert as soon as something suspicious is detected in the incoming video streams," said Chen.

The research team introduced SBCs to be implemented in decentralized computing platforms, which distributes the workload among multiple Fog computing nodes, instead of to one centralized server. Because of decentralized computing, the video does not need to be transferred to one remote server, making the surveillance system more agile and robust. Data processing can then be processed and analyzed in a more effective and timely manner.

The algorithm does not identify, track, or record the activities of anyone, thereby maintaining a high-level of privacy within a secure system. Future models of this algorithm will take advantage of more advanced hardware and security mechanisms to ensure that this surveillance system is evolutionary and maintains high performance in the lifespan.

The paper, "Kerman: A Hybrid Lightweight Tracking Algorithm to Enable Smart Surveillance as an Edge Service," won the best paper award at the 2019 IEEE CCNC conference.

Interested in chemistry and materials science?

Subscribe to our free Chemistry & Materials Science Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By subscribing, you agree to receive email related to Lab Manager content and products. You may unsubscribe at any time.

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image