New Nanomaterial Offers Promise in Bendable, Wearable Electronic Devices

Electroplated polymer makes transparent, highly conductive, ultrathin film

Written byUniversity of Illinois at Chicago
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

Wearable NanotechHighly conductive ultrathin film on skin between clips.Photo Courtesy of: Sam Yoon/Korea UniversityAn ultrathin film that is both transparent and highly conductive to electric current has been produced by a cheap and simple method devised by an international team of nanomaterials researchers from the University of Illinois at Chicago and Korea University.

The film—actually a mat of tangled nanofiber, electroplated to form a "self-junctioned copper nano-chicken wire"—is also bendable and stretchable, offering potential applications in roll-up touchscreen displays, wearable electronics, flexible solar cells and electronic skin.

The finding is reported in the June 13 issue of Advanced Materials.

Lab manager academy logo

Advanced Lab Management Certificate

The Advanced Lab Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

Related Article: Fast, Stretchy Circuits Could Yield New Wave of Wearable Electronics

"It's important, but difficult, to make materials that are both transparent and conductive," says Alexander Yarin, UIC Distinguished Professor of Mechanical Engineering, one of two corresponding authors on the publication.

The new film establishes a "world-record combination of high transparency and low electrical resistance," the latter at least 10-fold greater than the previous existing record, said Sam Yoon, who is also a corresponding author and a professor of mechanical engineering at Korea University.

The film also retains its properties after repeated cycles of severe stretching or bending, Yarin said—an important property for touchscreens or wearables.

Manufacture begins by electrospinning a nanofiber mat of polyacrylonitrile, or PAN, whose fibers are about one-hundredth the diameter of a human hair. The fiber shoots out like a rapidly coiling noodle, which when deposited onto a surface intersects itself a million times, Yarin said.

Interested in chemistry and materials science?

Subscribe to our free Chemistry & Materials Science Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By subscribing, you agree to receive email related to Lab Manager content and products. You may unsubscribe at any time.

"The nanofiber spins out in a spiral cone, but forms fractal loops in flight," Yarin said. "The loops have loops, so it gets very long and very thin."

The naked PAN polymer doesn't conduct, so it must first be spatter-coated with a metal to attract metal ions. The fiber is then electroplated with copper—or silver, nickel or gold.

The electrospinning and electroplating are both relatively high-throughput, commercially viable processes that take only a few seconds each, according to the researchers.

Related Article: Computers in Your Clothes? A Milestone for Wearable Electronics

"We can then take the metal-plated fibers and transfer to any surface—the skin of the hand, a leaf, or glass," Yarin said. An additional application may be as a nano-textured surface that dramatically increases cooling efficiency.

Yoon said the "self-fusion" by electroplating at the fiber junctions "dramatically reduced the contact resistance." Yarin noted that the metal-plated junctions facilitated percolation of the electric current—and also account for the nanomaterial's physical resiliency.

"But most of it is holes," he said, which makes it 92 percent transparent. "You don't see it."

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image