Not Just Junk DNA

Recent study shows that genomic sequence elements that were previously thought to be mere “junk DNA” have a critical role

Written byGeorgia Institute of Technology
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Since the classical studies of Jacob and Monod in the early 1960s, it has been evident that genome sequences contain not only blueprints for genes and the proteins that they encode, but also the instructions for a coordinated regulatory program that governs when, where and to what extent these genes and proteins are expressed. The execution of this regulatory code is what allows for the creation of very different cell and tissue types from the same set of genetic instructions found in the nucleus of every cell.

A recent study published in the journal Proceedings of the National Academy of Sciences (PNAS) shows that critical aspects of this regulatory program are encoded by genomic sequence elements that were previously thought to be mere “junk DNA” with no important functions.

The vast majority of the human genome – about 98 percent of the total genetic information – is not dedicated to encoding proteins, and this non-coding sequence was initially designated as junk DNA to underscore its lack of apparent function. Much of the so-called junk DNA in our genomes has accumulated over evolutionary time due to the activity of retrotransposable elements (RTEs), which are capable of moving (transposing) from one location to another in the genome and make copies of themselves when they do so.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image