Labmanager Logo
Vector bacterial cell anatomy isolated on white background

iStock, Vitalii Dumma

Physicist Defends Validity of Stokes-Einstein Equation in Living Systems

Research should help scientists understand antibiotic resistance and the mechanical properties of cancer cells

| 2 min read
Share this Article
Register for free to listen to this article
Listen with Speechify
0:00
2:00

A physicist at the University of Arkansas has defended the validity of the Stokes-Einstein equation, one of Albert Einstein’s most famous equations, as it relates to biology. The research will help scientists better understand antibiotic resistance and the mechanical properties of cancer cells.

Working with proteins in live bacteria, Yong Wang, assistant professor in the Fulbright College of Arts and Sciences, tested the 117-year-old equation, which provided evidence for the reality of atoms and molecules. He found that the famous equation remained valid for explaining how molecules move inside bacteria.

Lab manager academy logo

Get training in Lab Crisis Preparation and earn CEUs.

One of over 25 IACET-accredited courses in the Academy.

Certification logo

Lab Crisis Preparation course

“Bacterial cytoplasm is not a simple soup,” Wang said. “Our study showed that it might be more like spaghetti with tomato sauce and meatballs.”

Cytoplasm is the crowded and complex material inside bacteria. It has high concentrations of large biological molecules, including millions of proteins, carbohydrates and salts, and all kinds of polymers and filaments, such as DNA and RNA.

Wang found that although Einstein’s equation appeared to be off for proteins’ motion within live bacteria, it remained valid by taking into account the entangled polymers and filaments inside bacteria.

The so-called Einstein relation—also called the Stokes-Einstein equation—is one of Albert Einstein’s major research accomplishments in his “year of miracles,” 1905. Explaining the mobility of particles through liquid, the equation has been characterized as a stochastic model for Brownian motion, meaning particles move around randomly because of collisions with surrounding molecules. Most importantly, the theory provided early empirical evidence for the reality of atoms and molecules.

However, over the past two decades, scientists have challenged the theory’s validity as it applies to what’s inside live cells and bacteria. Wang’s study adds to this body of knowledge, helping resolve the current controversy.

Interested in Life Science News?

Subscribe to our free Life Science Tools & Techniques newsletter.

More importantly, it provides a foundation for assessing the mechanical properties of cells and bacteria based on the Einstein relation. This should help scientists understand antibiotic resistance of certain microorganisms and the mechanical properties of cancer cells, which differ from than the mechanical properties of normal, healthy cells.

On this study, which was published in Physical Review Letters, Wang worked with Lin Oliver, professor and chair of the department of physics, and Asmaa Sadoon, doctoral student in the microelectronics-photonics program.

- This press release was originally published on the University of Arkansas website

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - October 2024

Lab Rats to Lab Tech: The Evolution of Research Models

Ethical and innovative scientific alternatives to animal-based R&D

Lab Manager October 2024 Cover Image
Lab Manager Life Science eNewsletter

Stay Connected with Life Science News

Click below to subscribe to Life Science Tools & Techniques eNewsletter!

Subscribe Today