Lab Manager | Run Your Lab Like a Business
Person holding petri dish with bacteria in it
iStock, Manjurul

Plastic-Eating Bacteria Turn Waste into Useful Starting Materials

Newly developed E. coli strain turns polyethylene terephthalate waste into adipic acid

by American Chemical Society
Register for free to listen to this article
Listen with Speechify
0:00
5:00

Mountains of used plastic bottles get thrown away every day, but microbes could potentially tackle this problem. Now, researchers in ACS Central Science report that they’ve developed a plastic-eating E. coli that can efficiently turn polyethylene terephthalate (PET) waste into adipic acid, which is used to make nylon materials, drugs, and fragrances.

Previously, a team of researchers including Stephen Wallace engineered a strain of E. coli to transform the main component in old PET bottles, terephthalic acid, into something tastier and more valuable: the vanilla flavor compound vanillin. At the same time, other researchers engineered microbes to metabolize terephthalic acid into a variety of small molecules, including short acids. So, Wallace and a new team from the University of Edinburgh wanted to expand E. coli’s biosynthetic pathways to include the metabolism of terephthalic acid into adipic acid, a feedstock for many everyday products that’s typically generated from fossil fuels using energy-intensive processes.

Get training in Materials and Substance Tracking and earn CEUs.One of over 25 IACET-accredited courses in the Academy.
Materials and Substance Tracking Course

The team developed a new E. coli strain that produced enzymes that could transform terephthalic acid into compounds such as muconic acid and adipic acid. Then, to transform the muconic acid into adipic acid, they used a second type of E. coli, which produced hydrogen gas, and a palladium catalyst. In experiments, the team found that attaching the engineered microbial cells to alginate hydrogel beads improved their efficiency, and up to 79 percent of the terephthalic acid was converted into adipic acid. Using real-world samples of terephthalic acid from a discarded bottle and a coating taken from waste packaging labels, the engineered E. coli system efficiently produced adipic acid. In the future, the researchers say they will look for pathways to biosynthesize additional higher-value products.

- This press release was provided by American Chemical Society