Princeton Scientists Construct Synthetic Proteins that Sustain Life

In a groundbreaking achievement that could help scientists "build" new biological systems, Princeton University scientists have constructed for the first time artificial proteins that enable the growth of living cells.

Written byOther Author
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

In a groundbreaking achievement that could help scientists "build" new biological systems, Princeton University scientists have constructed for the first time artificial proteins that enable the growth of living cells.

The team of researchers created genetic sequences never before seen in nature, and the scientists showed that they can produce substances that sustain life in cells almost as readily as proteins produced by nature's own toolkit.

"What we have here are molecular machines that function quite well within a living organism even though they were designed from scratch and expressed from artificial genes," said Michael Hecht, a professor of chemistry at Princeton, who led the research. "This tells us that the molecular parts kit for life need not be limited to parts -- genes and proteins -- that already exist in nature." Michael Hecht

Michael Hecht, a professor of chemistry at Princeton University, has led a team of researchers who have for the first time constructed artificial proteins that enable the growth of living cells. The synthetic proteins were designed from scratch and expressed from artificial genes. He is holding samples of living bacteria containing the synthetic proteins. (Photo by Brian Wilson)

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image