Quantitative Approaches Provide New Perspective on Development of Antibiotic Resistance

Using quantitative models of bacterial growth, a team of University of California, San Diego biophysicists has discovered the bizarre way by which antibiotic resistance allows bacteria to multiply in the presence of antibiotics, a growing health problem in hospitals and nursing homes across the United States.

Written byLab Manager
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Two months ago, the Centers for Disease Control and Prevention issued a sobering report estimating that antibiotic-resistant bacteria last year caused more than two million illnesses and approximately 23,000 deaths in the United States. Treating these infections, the report said, added $20 billion last year to our already overburdened health care system.

Many approaches are now being employed by public health officials to limit the spread of antibiotic resistance in bacteria—such as limiting the use of antibiotics in livestock, controlling prescriptions of antibiotics and developing new drugs against bacteria already resistant to conventional drug treatments. But understanding how bacteria grow and evolve drug resistance could also help stop its spread by allowing scientists to target the process of evolution itself.

“Understanding how bacteria harboring antibiotic resistance grow in the presence of antibiotics is critical for predicting the spread and evolution of drug resistance,” the UC San Diego scientists say in an article published in the November 29 issue of the journal Science.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image