Scientists Make Vanadium into a Useful Catalyst for Hydrogenation

This reaction is used for making everything from vegetable oils to petrochemical products to vitamins

Written byArgonne National Laboratory
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

Argonne chemist Max DelferroArgonne chemist Max Delferro has developed an unusually active form of vanadium for hydrogenation reactions. Vanadium an inexpensive common metal that could replace some of the precious metals currently found in catalysts used in these reactions, frequently used in processing of petrochemicals.Photo credit: Argonne National LaboratoryJust as Cinderella turned from a poor teenager into a magnificent princess with the aid of a little magic, scientists at the U.S. Department of Energy’s Argonne National Laboratory have transformed a common metal into a useful catalyst for a wide class of reactions, a role formerly reserved for expensive precious metals.

In a new study, Argonne chemist Max Delferro boosted and analyzed the unprecedented catalytic activity of an element called vanadium for hydrogenation—a reaction that is used for making everything from vegetable oils to petrochemical products to vitamins. 

“Typically, catalyzing these reactions has typically required precious metals, like platinum, palladium, or rhodium,” Delferro said.

Lab manager academy logo

Lab Quality Management Certificate

The Lab Quality Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

Vanadium is what chemists call a first-row transition metal, which refers to its place on the periodic table. Like its neighbors titanium and chromium, vanadium is much more abundant and cheaper than the precious metals.

Unfortunately, most vanadium on its own will not work for the hydrogenation process. To make the vanadium work required a three-step process. First, the vanadium has to be in its 3+ oxidation state, a very reactive but unstable state. Second, the vanadium had to be relatively dispersed on the surface—if the clumps of vanadium atoms were too big, they would cease to be as active. Last, the vanadium atoms had to be “low-coordinated,” which means that there would be electronic room for the target molecules to bind.

Related Article: "Seeing" Hydrogen Atoms to Unveil Enzyme Catalysts

“Getting single-atom vanadium into this special configuration on metal oxide surfaces is not easy,” Delferro said. “It requires the use of special synthetic techniques such as surface organometallic chemistry and atomic layer deposition. However, if we can make vanadium or another abundant metal as catalytically active as the noble metals, we can create dramatic cost savings in these very common and commercially important catalytic processes.”

When Delferro and his team created the vanadium in this configuration, they saw a dramatic boost in catalytic activity.

Interested in chemistry and materials science?

Subscribe to our free Chemistry & Materials Science Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By subscribing, you agree to receive email related to Lab Manager content and products. You may unsubscribe at any time.

An article based on the study, “Isolated, Well-Defined Organovanadium(III) on Silica: Single-Site Catalyst for Hydrogenation of Alkenes and Alkynes,” appeared online in Chemical Communications on May 9 in the special issue, “ChemComm’s 2017 Emerging Investigators.”

The research was funded by the DOE Office of Science’s Office of Science.

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image