Scientists Measure Communication Between Stem Cell-Derived Motor Neurons, Muscle Cells

UCLA researchers have developed a novel system to measure communication between stem cell–derived motor neurons and muscle cells in a Petri dish.

Written byOther Author
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

In an effort to identify the underlying causes of neurological disorders that impair motor functions such as walking and breathing, UCLA researchers have developed a novel system to measure communication between stem cell–derived motor neurons and muscle cells in a Petri dish.

The study provides an important proof of principle that functional motor circuits can be created outside the body using these neurons and cells and that the level of communication, or synaptic activity, between them can be accurately measured by stimulating the motor neurons with an electrode and then tracking the transfer of electrical activity into the muscle cells to which the neurons are connected.

When motor neurons are stimulated, they release neurotransmitters that depolarize the membranes of muscle cells. This allows calcium and other ions to enter the cells, causing them to contract. By measuring the strength of this activity, one can get a good estimation of the overall health of motor neurons.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image