SNS Researchers Overcome the Freezing Sample Problem in Biostudies

Lithium chloride enables neutron studies of protein/solvent interactions at supercold temperatures.

Written byOther Author
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Lithium chloride enables neutron studies of protein/solvent interactions at supercold temperatures

Researchers at the Spallation Neutron Source BASIS beam line at the Department of Energy's Oak Ridge National Laboratory have successfully developed a method to study biomolecules (proteins) at temperatures far below freezing using a lithium chloride preparation in the aqueous solvent that prevents freezing.

Studying biosamples at supercold temperatures - 200 Kelvin - was previously impossible, as the water in such a solution inevitably freezes, and with it, the biosample's dynamic interactions freeze, too. The ability to study proteins at these temperatures gives researchers an important new avenue for understanding how they function in living organisms.

Neutron researchers need to study the dynamic interaction of proteins and their aqueous solvent at very low temperatures to understand their vibrational behavior at the atomic level. Then, while slowly raising the temperature to physiological conditions, they can study the unique biological "relaxational" motions that dominate as the temperature is raised.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image