Surprise: Protons Bypass Hydrogen Bonds but Still Change Molecules

Conventional wisdom has it that proton transfers can only happen using hydrogen bonds as conduits, “proton wires” of hydrogen-bonded networks that can connect and reconnect to alter molecular properties....

Written byOther Author
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Berkeley Lab scientists and their colleagues have discovered an unsuspected way that protons can move among molecules – revealing new opportunities for research in biology, environmental science, and green chemistry

When a proton – the bare nucleus of a hydrogen atom – transfers from one molecule to another, or moves within a molecule, the result is a hydrogen bond, in which the proton and another atom like nitrogen or oxygen share electrons. Conventional wisdom has it that proton transfers can only happen using hydrogen bonds as conduits, “proton wires” of hydrogen-bonded networks that can connect and reconnect to alter molecular properties.

Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA, where they bond the base pairs that encode genes and map protein structures. Recently a team of researchers using the Advanced Light Source (ALS) at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) discovered to their surprise that in special cases protons can find ways to transfer even when hydrogen bonds are blocked. The team’s results appear in Nature Chemistry.

Stacking the odd molecules

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image