The Signal and the Noise

Henrik Dohlman, PhD, discovered why seemingly identical cells might react differently to the chemical signals inside our bodies and the drugs we use to battle diseases.

Written byMark Derewicz-University of North Carolina Newsroom
| 5 min read
Register for free to listen to this article
Listen with Speechify
0:00
5:00

Talk to Henrik Dohlman, PhD, and you’ll realize that the quest for personalized medicine is about to get a whole lot more personal. We all know that people are very different, but Dohlman is finding evidence that cells we consider identical are far from it; they respond to outside stimuli differently – things like odor, light, and perhaps most importantly, therapeutics such as cancer drugs.

Dohlman, a professor of biochemistry and biophysics in the UNC School of Medicine, is like a mechanic for cells. He takes them apart to see how they function. He can tell you what part is like a gas pedal – a protein that pushes a brain chemical into action, for instance. And he can tell you which part is like the brakes – a protein that counteracts the effect of the gas pedal. Now he’s even able to show us why these brakes don’t work the same even in cells that are genetically identical.

Dohlman, a member of the UNC Lineberger Comprehensive Cancer Center, studies yeast – single cell organisms that are much more similar to each other than, say, individual human heart cells. They can live in a much more controlled environment. They’re also easier to manipulate. All of these things make them a good experimental model for studying the tiny proteins that cells use to do their thing.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image