Titania Nanotubes go Commercial

Seven years ago, physics pro­fessor Latika Mennon’s first grad­uate stu­dent said he wanted to “change the world.”

Written byOther Author
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

Seven years ago, Northeastern University physics pro­fessor Latika Mennon’s first grad­uate stu­dent said he wanted to “change the world.” She knew of her exper­tise in making nanoporous alu­minum oxide and believed an anal­o­gous system with tita­nium dioxide, or titania, could be useful in the devel­op­ment of fuel cells and solar panels.

“Alu­minum is more like an insu­lator,” Menon explained. “For solar cells you need semi­con­duc­tors. Titania is a semiconductor.”

Using simple elec­tro­chem­ical methods, Menon’s team devel­oped a mate­rial made of neatly aligned, hollow, titania nan­otubes. “It’s an array of tubes,” she said. “Just like lots of cylin­ders, or test tubes, arranged in parallel.”

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image