Sea campion flowers in a field

Ancestral Variation Guides Future Environmental Adaptations

The humble sea campion flower can show us how species adapt to changing environmental factors

Written byBangor University
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00

The speed of environmental change is very challenging for wild organisms. When exposed to a new environment individual plants and animals can potentially adjust their biology to better cope with new pressures they are exposed to—this is known as phenotypic plasticity.

Plasticity is likely to be important in the early stages of colonizing new places or when exposed to toxic substances in the environment. New research published in Nature Ecology & Evolution, shows that early plasticity can influence the ability to subsequently evolve genetic adaptations to conquer new habitats.

Lab manager academy logo

Lab Management Certificate

The Lab Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

Sea campion, a coastal wildflower from the UK and Ireland has adapted to toxic, zinc rich industrial-era mining waste, which kills most other plant species. The zinc-tolerant plants have evolved from zinc-sensitive, coastal populations separately in different places, several times.

To understand the role of plasticity in rapid adaptation, a team of researchers lead by Bangor University conducted experiments on sea campion.

As zinc-tolerance has evolved several times, this gave the researchers the opportunity to investigate whether ancestral plasticity made it more likely that the same genes would be used by different populations that were exposed to the same environment.

By exposing the tolerant and sensitive plants to both benign and zinc contaminated environments and measuring changes in the expression of genes in the plant’s roots, the researchers were able to see how plasticity in the coastal ancestors has paved the way for adaptation to take place very quickly.

lab design news logo

Interested in lab design?

Sign up for the free Lab Design Newsletter from our sister site, Lab Design News.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By completing this form, you agree to receive news updates and relevant promotional content from Lab Design News. You may unsubscribe at any time. View our Privacy Policy

Dr. Alex Papadopulos, senior lecturer at Bangor University explained:

“Sea campion usually grow on cliffs and shingle beaches, but mining opened up a new niche for them that other plants weren’t able to exploit. Our research has shown that some of the beneficial plasticity in the coastal plants has helped the mine plants to adapt so quickly.”

Papadopulos added, “Remarkably, if a gene responds to the new environment in a beneficial way in the ancestral plants, it is much more likely that that gene will be reused in all of the lineages that are independently adapting to the new environment. Phenotypic plasticity may make it more likely that there would be the same evolutionary outcome if the tape of life were replayed. If we understand the plastic responses that species have to environmental change, we may be better equipped to predict the impacts of climate change on biodiversity.”

- This press release was originally published on the Bangor University website

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image