Biologists Report Improved Method to Calculate Lifetime Energy Requirements of Cells, Genes

Findings counter prevailing ideas about the forces driving genome evolution

Written byIndiana University
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

BLOOMINGTON, Ind. -- In a recently published paper, Indiana University biologists have calculated the lifetime energy requirements of multiple types of cells, as well as the energy required to replicate and express the genes within these cells.

"The Bioenergetic Costs of a Gene," reported in the Proceedings of the National Academy of Sciences, describes for the first time how much total energy is needed to build and maintain a cell, and how this scales with cell size.

"This study attempts to systematically map out the lifetime energy requirements of cells in a comprehensive way across a multitude of species, as well as the total cost of maintaining and expressing a genome," said IU biologist Michael Lynch, who led the study. "It also negates in a solid way a common argument that complex cells could never have evolved without an energy-producing mitochondrion."

Lynch is a Distinguished Professor in the IU Bloomington College of Arts and Sciences’ Department of Biology.Georgi K. Marinov, a postdoctoral researcher in biology, is co-author on the paper.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image