Physical Sciences

Earlier on April 5, the world’s most powerful particle accelerator began its second act. After two years of upgrades and repairs, proton beams once again circulated around the Large Hadron Collider, located at the CERN laboratory near Geneva, Switzerland.

The National Science Foundation has awarded the North American Nanohertz Observatory for Gravitational Waves $14.5 million over a five-year period to create and operate a Physics Frontiers Center aimed at using radio timing observations of pulsars with the Green Bank Telescope and Arecibo Observatory to detect and study low-frequency gravitational waves.

The newest particle accelerators and those of the future will be built with superconducting radio-frequency (SRF) cavities, and institutions around the world are working hard to develop this technology. Fermilab's advanced superconducting test accelerator was built to take advantage of SRF technology accelerator research and development.

Last year, the American Chemical Society's (ACS) Reactions series shook up the comedy world with a video featuring nothing but chemistry jokes. After overwhelming public acclaim, they're back for this April Fools' Day with round two, featuring a number of fan submissions

If you’re allergic to natural rubber latex, the U.S. Food and Drug Administration has good news for you: in the future, you are less likely to be misinformed about the absence of this allergen in such products as medical devices. To avoid false assurances about this hazard to your health, FDA is recommending to manufacturers to stop using the labels “latex-free” or “does not contain latex.”

Researchers at the University of Texas at Dallas have created new structures that exploit the electromechanical properties of specific nanofibers to stretch to up to seven times their length, while remaining tougher than Kevlar.

Astronomers using observations from NASA's Hubble Space Telescope and Chandra X-ray Observatory have found that dark matter does not slow down when colliding with each other. This means that it interacts with itself even less than previously thought. Researchers say this finding narrows down the options for what this mysterious substance might be.

Less than 1 percent of Earth’s water is drinkable. Removing salt and other minerals from our biggest available source of water—seawater—may help satisfy a growing global population thirsty for fresh water for drinking, farming, transportation, heating, cooling and industry. But desalination is an energy-intensive process, which concerns those wanting to expand its application.












