Pharma/Biopharma

In the race to find more effective ways to treat cancer, Boise State University biophysicist Daniel Fologea is working outside the rules of general mathematics that say one plus one equals two. In his world, one plus one adds up to a whole lot more.

Thermo Fisher Scientific has developed a high-resolution hydrophobic interaction chromatography (HIC) method that can separate a fusion protein from a truncated version and a structural isomer.

Thermo Fisher Scientific has developed a simple, rapid, reliable, and accurate high-performance liquid chromatography (HPLC) method for the simultaneous determination of amlodipine and besylate in an amlodipine besylate drug substance.

One of the major benefits of working in the sciences is the ability to have a positive impact on the world through research or the development of new products. That’s certainly the case with working at Redbiotec AG, a biotechnology company located at the Bio-Technopark in Schlieren, near Zürich, Switzerland.

A $10 million grant over five years from the National Institutes of Health will establish a prestigious Institutional Development Award (IDeA) Center of Biomedical Research Excellence (COBRE) in Matrix Biology at Boise State University. COBRE centers promote collaborative, interactive efforts among researchers with complementary backgrounds, skills and expertise.

An analysis of patented university inventions licensed to biotechnology firms has revealed early bottlenecks on the path to commercialization. To open these roadblocks, the researchers suggest that better communication of basic research results during the discovery stage could lead to faster commercialization down the road.

Researchers with The Cancer Genome Atlas (TCGA) Research Network have completed the largest, most diverse tumor genetic analysis ever conducted, revealing a new approach to classifying cancers. The work, led by researchers at the UNC Lineberger Comprehensive Cancer Center at the University of North Carolina at Chapel Hill and other TCGA sites, not only revamps traditional ideas of how cancers are diagnosed and treated, but could also have a profound impact on the future landscape of drug development.











