Damaged DNA may Stall Patrolling Molecule to Initiate Repair

Sites where DNA is damaged may cause a molecule that slides along the DNA strand to scan for damage to slow on its patrol, delaying it long enough to recognize and initiate repair. The finding suggests that the delay itself may be the key that allows the protein molecule to find its target, according to researchers at the University of Illinois at Chicago.

Written byUniversity of Illinois at Chicago
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Usually, the repair protein zips along quickly, says Anjum Ansari, UIC professor of physics and co-principal investigator on the study, published this month in Nature Communications.

“If the DNA is normal and the protein is searching, the interaction that the protein makes with the DNA is not very tight, and the protein is able to wander at some speed,” Ansari said.

“When the protein encounters a damaged DNA, it’s not quite like a normal DNA , it may be a little twisted or more flexible. The protein ‘stumbles’ at that spot and gets a little stalled, enough to give it a little bit more time at the damaged site,” she said. “The longer it sits, the higher the probability that it will open the DNA and initiate repair.”

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.
Add Lab Manager as a preferred source on Google

Add Lab Manager as a preferred Google source to see more of our trusted coverage.

Related Topics

CURRENT ISSUE - January/February 2026

How to Build Trust Into Every Lab Result

Applying the Six Cs Helps Labs Deliver Results Stakeholders Can Rely On

Lab Manager January/February 2026 Cover Image