Diet May Influence the Spread of a Deadly Type of Breast Cancer, Study Finds

Investigators found that by limiting an amino acid called asparagine in laboratory mice with triple-negative breast cancer, they could dramatically reduce the ability of the cancer to travel to distant sites in the body

Written byCedars-Sinai Medical Center
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

breast cancer

Los Angeles —Feb. 7, 2018— A single protein building block commonly found in food may hold a key to preventing the spread of an often-deadly type of breast cancer, according to a new multicenter study published Feb. 7 in the medical journal Nature.

Investigators found that by limiting an amino acid called asparagine in laboratory mice with triple-negative breast cancer, they could dramatically reduce the ability of the cancer to travel to distant sites in the body. Among other techniques, the team used dietary restrictions to limit asparagine.

Lab manager academy logo

Lab Quality Management Certificate

The Lab Quality Management certificate is more than training—it’s a professional advantage.

Gain critical skills and IACET-approved CEUs that make a measurable difference.

Foods rich in asparagine include dairy, whey, beef, poultry, eggs, fish, seafood, asparagus, potatoes, legumes, nuts, seeds, soy, and whole grains. Foods low in asparagine include most fruits and vegetables.

"Our study adds to a growing body of evidence that suggests diet can influence the course of the disease," said Simon Knott, PhD, associate director of the Cedars-Sinai Center for Bioinformatics and Functional Genomics and one of two first authors of the study. The research was conducted at more than a dozen institutions.

If further research confirms the findings in human cells, limiting the amount of asparagine cancer patients ingest could be a potential strategy to augment existing therapies and to prevent the spread of breast cancer, Knott added.

The researchers studied triple-negative breast cancer cells, which grow and spread faster than most other types of cancer cells. It is called triple negative because it lacks receptors for the hormones estrogen and progesterone and makes little of a protein called HER2. As a result, it resists common treatments—which target these factors—and has a higher-than-average mortality rate.

Want to stay up to date on the latest lab management news?

Subscribe to our free Lab Manager Monitor Newsletter.

Is the form not loading? If you use an ad blocker or browser privacy features, try turning them off and refresh the page.

By subscribing, you agree to receive email related to Lab Manager content and products. You may unsubscribe at any time.

Research from past studies found that most tumor cells remain in the primary breast site, but a subset of cells leaves the breast and enters the bloodstream. Those cells colonize in the lungs, brain, and liver, where they proliferate. The study team wanted to understand the particular traits of the tumor cells circulating in the blood and in the sites where the cancer has spread.

Related Article: Plant-Based Diet Converts Breast Cancer in Mice from Lethal to Treatable Form

The researchers discovered that the appearance of asparagine synthetase—the enzyme cells used to make asparagine—in a primary tumor was strongly associated with later cancer spread.

The researchers also found that metastasis was greatly limited by reducing asparagine synthetase, treatment with the chemotherapy drug L-asparaginase, or dietary restriction. When the lab mice were given food rich in asparagine, the cancer cells spread more rapidly.

"The study results are extremely suggestive that changes in diet might impact both how an individual responds to primary therapy and their chances of lethal disease spreading later in life," said the study's senior author, Gregory J. Hannon, PhD, professor of Cancer Molecular Biology and director of the Cancer Research UK Cambridge Institute at the University of Cambridge in England.

Investigators now are considering conducting an early-phase clinical trial in which healthy participants would consume a low-asparagine diet. If the diet results in decreased levels of asparagine, the next scientific step would involve a clinical trial with cancer patients. That trial likely would employ dietary restrictions as well as chemotherapy and immunotherapy, Knott said.

Studying the effects of asparagine also could alter treatments for other types of cancer, investigators say.

"This study may have implications not only for breast cancer, but for many metastatic cancers," said Ravi Thadhani, MD, MPH, vice dean of Research and Graduate Research Education at Cedars-Sinai.

Research reported in this publication was supported in part by the National Cancer Institute of the National Institutes of Health, under these awards numbers: P50-CA58223-09A1, R00 CA194077 and 5P30CA045508; by the National Institutes of Health grant number 5 P01 CA013106-44; and by the Susan G. Komen Foundation (SAC110006); the ICR and CRUK grand challenge award (C59824/A25044); and a grant from the DOD BCRP (W81XWH-1-0300).

Disclosure: Investigator Charles M. Perou is an equity stock holder of BioClassifier LLC and University Genomics, and has filed a patent on the PAM50 subtyping assay. Simon Knott, Elvin Wagenblast, and Gregory J. Hannon are seeking patent protection on the manipulation of asparagine availability for patient benefit in the metastatic setting. The remaining authors declare no competing financial interests.

Loading Next Article...
Loading Next Article...

CURRENT ISSUE - May/June 2025

The Benefits, Business Case, And Planning Strategies Behind Lab Digitalization

Joining Processes And Software For a Streamlined, Quality-First Laboratory

Lab Manager May/June 2025 Cover Image