FermiLab Experiment Eases Fears

A recently released MINOS result appears to quell concerns raised by a MINOS result in June 2010 about how the subatomic world works.

Written byOther Author
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00

Surprise Difference in Neutrino and Antineutrino Mass Lessening with New Measurements from a Fermilab Experiment

August 26, 2011
BATAVIA, Illinois — The physics community got a jolt last year when results showed for the first time that neutrinos and their antimatter counterparts, antineutrinos, might be the odd man out in the particle world and have different masses. This idea was something that went against most commonly accepted theories of how the subatomic world works.

A result released today (August 25) from the MINOS experiment at the Department of Energy’s Fermi National Accelerator Laboratory appears to quell concerns raised by a MINOS result in June 2010 and brings neutrino and antineutrino masses more closely in sync.

By bringing measurements of neutrinos and antineutrinos closer together, this new MINOS result allows physicists to lessen the potential ramifications of this specific neutrino imbalance. These ramifications include: a new way neutrinos interact with other particles, unseen interactions between neutrinos and matter in the earth and the need to rethink everything known about how the universe works at the tiniest levels.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

Related Topics

CURRENT ISSUE - November/December 2025

AI & Automation

Preparing Your Lab for the Next Stage

Lab Manager Nov/Dec 2025 Cover Image