INSIGHTS on Streamlining Clone Selection

Like great athletes and musicians, cells employed in cell-based assays or as expression systems for biopharmaceutical production are not born, but made. Cell lines that perform specifically and predictably arise from a population of cells that have undergone one or more genetic transformations (transfection) and are subsequently selected for desirable properties such as viability, protein or virus production; high culture density; or binding to drugs or antigens.

Written byAngelo DePalma, PhD
| 7 min read
Register for free to listen to this article
Listen with Speechify
0:00
7:00

When CHO-S colonies secreting a monoclonal antibody are cultured in diffusion-limiting methylcellulose matrix semi-solid media, immunofluorescence labeling (e.g. using FITC-labeled CloneDetect Reagent) allows the Molecular Devices ClonePix to select only the clonal highest-expressors among thousands of colonies.

It All Comes Down to Volumetric Productivity

Transfection is not completely predictable. Copies of genes may insert randomly into the host cell’s genome, often at nonproductive genomic loci. Multiple inserted copies may enhance desirable properties or may cripple a cell’s ability to divide or thrive. Expressed foreign proteins themselves, or undesirable genetic insertions, may be toxic.

Clone selection or clone picking is the process by which individual cells are separated post-transfection, allowed to grow into colonies of genetically identical cells, and selected on the basis of one or more characteristics. Traditionally, selection begins with limiting dilution, a process by which a polyclonal suspension of cells is diluted to very low cell concentration. Small aliquots are then transferred to wells of a microplate in the expectation that one and only one transfected cell inhabits each well. As this cell divides, and the daughter cells divide, and so forth, a colony of identical cells forms.

Many things can go wrong during cell line development. According to Vitaliy Gavrilyuk, PhD, MD, CEO of cell line and bioprocess development firm CDI Bioscience (Madison, WI), issues arise from cells themselves (e.g., viability, protein-generating productivity, growth/expansion, ability to thrive in suspension versus as attached colonies) or from low plating yields and cell numbers, suitability of the culture medium, the need for and availability of automation, human resources devoted to assays and plate handling, or the ability to scale culture conditions to sufficient quantities of product.

“Single cells don’t grow very well,” Gavrilyuk explains. “Remember, they originated from organs.” Most biomanufacturing- worthy expression systems, such as Chinese hamster ovary (CHO) cells, are naturally attachment-dependent and must be weaned away from their preferred anchored state before they will thrive under suspension conditions. Nor is limiting dilution terribly efficient. Only about 30 percent of wells contain a single, viable cell, a requirement for the technique to succeed.

To continue reading this article, sign up for FREE to
Lab Manager Logo
Membership is FREE and provides you with instant access to eNewsletters, digital publications, article archives, and more.

About the Author

Related Topics

CURRENT ISSUE - October 2025

Turning Safety Principles Into Daily Practice

Move Beyond Policies to Build a Lab Culture Where Safety is Second Nature

Lab Manager October 2025 Cover Image