Lab Manager | Run Your Lab Like a Business

News

Bubbles with the symbol for hydrogen in them on a black background
iStock, Olemedia

Researchers Develop a Sensor to Make Hydrogen Visible

Making invisible hydrogen gas visible to the naked eye in order to prevent the risk of fires and explosions

by University of Erlangen-Nuremberg
Register for free to listen to this article
Listen with Speechify
0:00
5:00

Researchers at the Department of Chemistry and Pharmacy and the Chair of Thermal Process Technology at Friedrich Alexander University of Erlangen-Nuremberg (FAU) have succeeded in making invisible hydrogen gas visible to the naked eye in order to prevent the risk of fires and explosions. The key to their research is what is known as supraparticles, tiny particles that change color as soon as they come near hydrogen. The results have been published in the journal Advanced Functional Materials.

In future, it is hoped that “green” hydrogen produced using renewable energy will become a key component of a sustainable and climate-friendly energy economy. Although we can neither see nor smell hydrogen gas, it is highly flammable and extremely explosive when it comes into contact with air. Historical events such as the explosion of the Hindenburg Zeppelin and recently also the explosion of a hydrogen refueling station in Norway show just how important safety precautions are if we are to establish a sustainable and safe hydrogen economy.

Take our IACET-accredited Lab Safety program and earn CEUs.
Lab Safety Certificate

In order to increase safety when handling hydrogen, researchers at FAU have explored the fundamental function mechanisms required for an innovative hydrogen sensor, based on a concept developed at the Fraunhofer Institute for Silicate Research ISC in Würzburg. The following researchers were involved in the project: Dr. Karl Mandel, professorship of inorganic chemistry; Dr. Jörg Libuda and Dr. Tanja Bauer, chair of interface research and catalysis; Dr. Dirk Zahn, professorship of theoretical chemistry; Dr. Matthias Thommes, chair of thermal process technology; and Dr. Andreas Görling, chair of theoretical chemistry.

Hydrogen sensors can successfully recognize even low concentrations of the gas, for example if there is a leak in the pipeline. The innovative hydrogen sensor designed by the FAU researchers consists of tiny particles, known as supraparticles, and can make hydrogen gas visible to the naked eye without electricity or complex equipment. The supraparticles are between one and ten micrometers in size, one micrometer is equivalent to one thousandth of a millimeter, and incorporate the violet-colored indicator dye resazurin. When they come into contact with hydrogen, the molecules in the dye react and visibly change color in two different stages. If the sensor turns pink, hydrogen has leaked once. If hydrogen is still leaking, and the sensor is in contact with large quantities of hydrogen, it turns colorless. The immediate reaction makes leaks visible and allows them to be found in real time. A further advantage of the innovative hydrogen sensor is its small size that makes it suitable for use in a number of different scenarios, for example for coating pipelines.

“The insight we have gained into the workings of the new particle system will allow us to continue to optimize the supraparticles until we can realize their full potential, implement them in real-life applications, and make a contribution to a safer hydrogen economy,” explain the lead authors of the publication Simon Schötz, research associate at ECRC and Jakob Reichstein, research associate at Mandel group.

- This press release was originally published on the University of Erlangen-Nuremberg website