Antibiotic Resistance

In a finding important for preventing the development of antibiotic-resistant superbugs, researchers at the University of Virginia School of Medicine and 22 other institutions have determined that the duration of antibiotic treatment for complicated abdominal infections can be cut by half and remain equally effective.

There’s an urgent demand for new antimicrobial compounds that are effective against constantly emerging drug-resistant bacteria. Two robotic chemical-synthesizing machines, named Symphony X and Overture, have joined the search. Their specialty is creating custom nanoscale structures that mimic nature’s proven designs. They’re also fast, able to assemble dozens of compounds at a time.

A University of Wisconsin-Madison animal scientist has developed an antibiotic-free method to protect animals raised for food against common infections.

Using a complex modeling program that helps analyze the physical dynamics of large, structurally complex protein molecules, a research team has made progress towards finding a weak spot in the architecture of a group of enzymes that are essential to antibiotic resistance in a number of bacteria.

Scientists have found antibiotic resistance genes in the bacterial flora of a South American tribe that never before had been exposed to antibiotic drugs. The findings suggest that bacteria in the human body have had the ability to resist antibiotics since long before such drugs were ever used to treat disease.

A newly developed spectroscopy method is helping to clarify the poorly understood molecular process by which an anti-HIV drug induces lethal mutations in the virus’ genetic material. The findings from the University of Chicago and the Massachusetts Institute of Technology could bolster efforts to develop the next generation of anti-viral treatments.











